## Observed and Calculated Infrared Spectrum of $\mathrm{Pd}\left(\mathrm{H}_{2}\right)$ in Solid Argon: A Ligand-Free Side-Bonded Molecular Hydrogen Complex

Lester Andrews, ${ }^{*}{ }^{\dagger}, \delta$ Laurent Manceron, ${ }^{\dagger}$<br>Mohammad Esmaïl Alikhani, ${ }^{\dagger}$ and Xuefeng Wang ${ }^{\ddagger}$<br>LADIR/Spectrochimie Moléculaire,UMR 7075<br>Université Pierre et Marie Curie,case courrier 49 4 Place Jussieu, 75252 Paris Cedex 05, France Chemistry Department, University of Virginia Charlottesville, Virginia, 22904-4319

Received July 25, 2000
A detailed assessment of the interaction between naked metal atoms and $\mathrm{H}_{2}$ is of fundamental importance for understanding oxidative addition reactions of metal complexes, clusters and surfaces. Since the discovery ${ }^{1}$ of $\mathrm{W}(\mathrm{CO})_{3}\left(\mathrm{PR}_{3}\right)_{2}\left(\eta^{2}-\mathrm{H}_{2}\right)$, other sidebonded dihydrogen complexes have been characterized by several groups. ${ }^{2-7}$ Furthermore, it has been found experimentally that rate constants for $\mathrm{H}_{2}$ activation vary with $\mathrm{Pd}_{\mathrm{n}}$ cluster size. ${ }^{8}$ This is in accord with recent theoretical studies, which have predicted that the minimum-energy structure is a side-bonded atom-molecule complex, ${ }^{11-14}$ but that $\mathrm{Pd}_{2}$ can form a stable ring $(\mathrm{PdH})_{2}$ species with no $\mathrm{H}-\mathrm{H}$ bond. ${ }^{13,14 \mathrm{c}}$ Finally, dihydrogen dissociates completely on a palladium metal surface., ${ }^{9,10}$

Evidence for naked metal $-\mathrm{H}_{2}$ complexes in a krypton and xenon matrix study with Pd was interpreted in terms of both endand side-bonded complexes; ${ }^{14 b, 15}$ however, our theoretical investigations find a stable minimum only for the side-bonded structure. The contrast with Pt, which is predicted by theory and suggested by matrix-isolation spectroscopy to form a dihydride, ${ }^{16,17}$ prompted us to investigate the reactions of laser-ablated and thermal Pd atoms with $\mathrm{H}_{2}$ in the more inert argon matrix. We report here

[^0]

Figure 1. Infrared spectra of products formed by the reaction of thermal Pd atoms with $\mathrm{H}_{2}$ in excess argon. (a) $\mathrm{Pd} / \mathrm{H}_{2} / \mathrm{Ar}=0.5 / 8 / 100$ co-deposited at 9 K for 90 min , (b) after annealing to 19 K , (c) after 365 nm filter photolysis for 80 min , and (d) after annealing to 24 K . Absorbance scale given for $3000-2400 \mathrm{~cm}^{-1}$ region; bands in $1500-1400 \mathrm{~cm}^{-1}$ region have been reduced $\times 0.12$ and in $1000-700 \mathrm{~cm}^{-1}$ region by $\times 0.02$ so the indicated absorbance scale must be $\times 8$ and $\times 50$ for these regions, respectively. A weak, broad background absorption at $3030 \mathrm{~cm}^{-1}$ makes quantitative photometry difficult at this wavenumber.

Table 1. Infrared Absorptions ( $\mathrm{cm}^{-1}$ ) Observed from Thermal-Evaporation and Laser-Ablation Pd Atom Matrix-Isolation Experiments with $\mathrm{H}_{2}$ in Excess Argon

| $\mathrm{H}_{2}$ | HD | $\mathrm{D}_{2}$ | identification |
| :---: | :---: | :---: | :---: |
| 3038 | 2639 | 2160 | B, $\mathrm{Pd}\left(\mathrm{H}_{2}\right)_{2}$ |
| $2971{ }^{\text {a }}$ | 2334 | 2169, 1916 ${ }^{\text {d }}$ | A, $\operatorname{Pd}\left(\mathrm{H}_{2}\right), \nu_{1}\left(\mathrm{a}_{1}\right)$ |
| 2858 | 2722 | 2061 | $\mathrm{E},(\mathrm{PdH})_{2}, \mathrm{ag}_{\mathrm{g}}+\mathrm{b}_{2 \mathrm{u}}$ |
| $2402{ }^{\text {b }}$ |  | 1802 | $\mathrm{A}, \mathrm{Pd}\left(\mathrm{H}_{2}\right),\left(3 v_{2}\right)$ |
| $1953{ }^{\text {c }}$ | 1953, 1403 | 1403 | PdH |
| $1507{ }^{\text {b }}$ | 1306 | 1098 | A, $\mathrm{Pd}\left(\mathrm{H}_{2}\right), \nu_{3}\left(\mathrm{~b}_{2}\right)$ |
|  | 1298 |  | D, $\mathrm{Pd}-\mathrm{Pd}\left(\mathrm{H}_{2}\right)$ |
| 1395 |  | 979 | $\mathrm{E},(\mathrm{PdH})_{2}$ site |
| 1348 | 1330 | 950 | $\mathrm{E},(\mathrm{PdH})_{2}, \mathrm{~b}_{2 \mathrm{u}}$ |
|  | 951 |  | $\mathrm{E},(\mathrm{PdH})_{2}, \mathrm{~b}_{2 \mathrm{u}}$ |
| 954 |  |  | A, $\mathrm{Pd}\left(\mathrm{H}_{2}\right)$ site |
| 950 | 804 | 714 | A, $\mathrm{Pd}\left(\mathrm{H}_{2}\right), \nu_{2}\left(\mathrm{a}_{1}\right)$ |
| 929 |  |  | D, $\mathrm{Pd}-\mathrm{Pd}\left(\mathrm{H}_{2}\right)$ site |
| 923 | 796 | 704 | D, $\mathrm{Pd}-\mathrm{Pd}\left(\mathrm{H}_{2}\right)$ |
| 778 | 650 | 586 | B, $\mathrm{Pd}\left(\mathrm{H}_{2}\right)_{2}$ |
| 730 | 588 | 549 | C, $\mathrm{Pd}\left(\mathrm{H}_{2}\right)_{3}$ |

${ }^{a}$ Relative integrated intensities 2971(16), 1507(2), 954, 950(360). ${ }^{b}$ Weaker bands observed only in thermal experiments. ${ }^{c}$ Strong band observed only in laser ablation experiments. ${ }^{d}$ Tentatively assigned to Fermi resonance between $v_{1}\left(\mathrm{a}_{1}\right)$ and $3 v_{2}\left(\mathrm{a}_{1}\right)$ of $\operatorname{Pd}\left(\mathrm{D}_{2}\right)$.
the complete infrared spectrum of $\operatorname{Pd}\left(\mathrm{H}_{2}\right)$ in solid argon, which is in very good agreement with the density functional theory (DFT) calculated vibrational spectrum. In addition, we identify the novel bis- and tris $-\mathrm{H}_{2}$ complexes, the related $\mathrm{Pd}-\mathrm{Pd}\left(\mathrm{H}_{2}\right)$ complex, and the stable $(\mathrm{PdH})_{2}$ reaction product containing dissociated dihydrogen.
The experimental methods employed for reacting laser-ablated and thermally evaporated Pd atoms with CO and recording infrared spectra of the products in solid argon have been described, ${ }^{18,19}$ and the same methods were used here for $\mathrm{H}_{2}$. In an argon matrix formed at 7 or 9 K , we expect to trap less than half of the $\mathrm{H}_{2}$ in the incident argon stream.
Figure 1 contrasts infrared spectra for Pd and $\mathrm{H}_{2}$ co-deposited with excess argon: the spectra reveal new absorptions, which shift with HD and $\mathrm{D}_{2}$ substitution, as listed in Table 1. All of these bands increase in different proportions on annealing the matrix, Figure 1b. With lower $\mathrm{H}_{2}$ and higher Pd concentration the D and E bands are more prominent. Significantly, the C band is favored more than B, which is enhanced over the A bands with

Table 2. Frequencies $\left(\mathrm{cm}^{-1}\right)$, Infrared Intensities ( $\mathrm{km} / \mathrm{mol}$, in parentheses) and Structures Calculated for $\mathrm{Pd}\left(\mathrm{H}_{2}\right)$ and $\mathrm{PdH}_{2}$ at the B3LYP/6-311++G(2d, 2p)/SDD Level ${ }^{a}$

|  |  | $\mathrm{a}_{1}$ | $\mathrm{~b}_{2}$ | $\mathrm{a}_{1}$ |
| :--- | :--- | :---: | :---: | :---: |
| $\mathrm{Pd}\left(\mathrm{H}_{2}\right)^{b}$ | $\mathrm{Pd}-\mathrm{H}: 1.698 \AA$ | 996 | 1444 | 2935 |
| ${ }^{1} \mathrm{~A}_{1}$ | $\mathrm{H}-\mathrm{H}: 0.854 \AA$ | $(170)$ | $(8)$ | $(83)$ |
|  | $\mathrm{H}-\mathrm{Pd}-\mathrm{H}: 29.7^{\circ}$ |  |  |  |
| $\mathrm{PdH}_{2}{ }^{c}$ | $\mathrm{Pd}-\mathrm{H}: 1.577 \AA$ | 529 | 2094 | 2199 |
| ${ }^{1} \mathrm{~A}_{1}$ | $\mathrm{H}-\mathrm{Pd}-\mathrm{H}: 72.3^{\circ}$ | $(0)$ | $(97)$ | $(2)$ |

${ }^{a}$ These calculations predict $\mathrm{H}_{2}$ bond length $(0.743 \AA)$ and harmonic frequency $\left(4417 \mathrm{~cm}^{-1}\right)$ and $\mathrm{Pd}-\mathrm{H}$ bond length $(1.541 \AA)$ and harmonic frequency $\left(2014 \mathrm{~cm}^{-1}\right) .{ }^{b} \mathrm{Pd}-\eta^{2}-\mathrm{H}_{2}$ complex, $17.5 \mathrm{kcal} / \mathrm{mol}$ more stable than $\mathrm{Pd}+\mathrm{H}_{2} .{ }^{c} \mathrm{PdH}_{2}$ molecule, $5.0 \mathrm{kcal} / \mathrm{mol}$ higher energy than $\mathrm{Pd}\left(\mathrm{H}_{2}\right)$.
increasing $\mathrm{H}_{2}$ at constant Pd concentration. The $\mathrm{A}, \mathrm{B}$, and C bands maintain constant relative intensities at constant $\mathrm{H}_{2}$ with increasing Pd concentration, so that a common Pd content is apparent. Finally, the stronger bands in Table 1 and the PdH absorption were observed in laser-ablation experiments, which gave 10$20 \%$ of the $950 \mathrm{~cm}^{-1}$ band absorbance using $2 \% \mathrm{H}_{2}$.

The A bands at 2971, 1507, and $950 \mathrm{~cm}^{-1}$ maintain approximately constant relative intensities over 10 -fold changes in both Pd and $\mathrm{H}_{2}$ reagent concentrations. Furthermore, irradiation at 365 nm selectively reduces the A band, destroys D, leaves C unchanged, and slightly increases the B and E bands (Figure 1c). Final annealing restores the A bands (Figure 1d). In separate experiments 540, 580, and 632 nm photolyses destroy D and increase E bands with little effect on the $\mathrm{A}, \mathrm{B}$, and C absorptions.

The structure and frequencies of $\operatorname{Pd}\left(\mathrm{H}_{2}\right)$ were calculated using DFT in Gaussian 98 with several functionals and basis sets, and the B3LYP, largest H basis, SDD pseudopotential results ${ }^{20-23}$ are reported in Table 2. Similar calculations work well for the $\mathrm{H}_{2}$ and PdH molecules.

The A bands arise from the first product formed at low reagent concentrations. A single intermediate component with HD and one $\mathrm{D}_{2}$ counterpart show that a single dihydrogen molecule is involved in the reaction to form species A. The stronger 2971 and $950 \mathrm{~cm}^{-1}$ absorptions are observed in the laser-ablation experiments, which generate much lower Pd atom fluxes. Hence, we conclude that the A absorptions are due to the side-bonded $\mathrm{Pd}\left(\mathrm{H}_{2}\right)$ complex, an assignment which is strongly supported by the DFT/B3LYP calculated frequencies in Table 2. Finally, the strong $950 \mathrm{~cm}^{-1}$ band for $\mathrm{Pd}-\eta^{2}-\mathrm{H}_{2}$ in solid argon is in accord with the krypton and xenon matrix spectra, ${ }^{15}$ but the bands assigned in that work to $\mathrm{Pd}-\eta^{1}-\mathrm{H}_{2}$ are in fact due to the higher $\mathrm{Pd}\left(\mathrm{H}_{2}\right)_{2,3}$ complexes, which result from the addition of more $\mathrm{H}_{2}$
(20) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A.; Jr.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Baboul, A. G.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Gonzalez, C.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Andres, J. L.; Gonzalez, C.; Head-Gordon, M.; Replogle, E. S. and Pople, J. A. Gaussian 98, revision A.7; Gaussian, Inc.: Pittsburgh, PA, 1998.
(21) (a) Becke, A. D. J. Chem. Phys. 1993, 98, 5648. (b) Lee, C.; Yang, W; Parr, R. G. Phys. Rev. B 1988, 37, 785.
(22) (a) Krishnan, R.; Binkley, J. S.; Seeger, R.; Pople, J. A. J. Chem. Phys. 1980, 72, 650. (b) Frisch, M. J.; Pople, J. A.; Binkley, J. S. J. Chem. Phys. 1984, 80, 3265.
(23) Andrae, D.; Haussermann, U.; Dolg, M.; Stoll, H.; Preuss, H. Theor. Chim. Acta 1990, 77, 123.
(24) Andrews, L.; Wang, X.; Alikhani, M. E.; Manceron, L., to be published.
(25) Eckert, J. Spectrochim. Acta 1992, 48A, 363.
(26) Huber, K. P.; Herzberg, G. Constants of Diatomic Molcules, Van Nostrand Reinhold: New York, 1979.
(27) Reed, A. E.; Curtiss, L. A.; Weinhold, F. Chem. Rev. 1988, 88, 899.
(28) Knight, L. B., Jr.; Cobranchi, S. T.; Herlong, J.; Kirk, T.; Balasubramanian, K.; Das, K. K. J. Chem. Phys. 1990, 92, 2721.
(29) Souter, P. F.; Kushto, G. P.; Andrews, L.; Neurock, M. J. Am. Chem. Soc. 1997, 119, 1682.
molecules to $\operatorname{Pd}\left(\mathrm{H}_{2}\right)$ and will be described in a later full paper. ${ }^{24}$ No evidence is found in this work for an end-bonded complex. The Pd-HH complex is an inversion transition state with an imaginary bending frequency in our DFT calculations.

The vibrational frequencies of $\operatorname{Pd}\left(\mathrm{H}_{2}\right)$ are of interest particularly as a model compound for side-bound hydrogen in transition metal complexes. The strong $950 \mathrm{~cm}^{-1}$ band is due to the symmetric $\mathrm{Pd}-\mathrm{H}_{2}$ stretching mode, which is in the range $950-850 \mathrm{~cm}^{-1}$ reported for this mode in transition metal complexes, ${ }^{1,25}$ and the much weaker $1507 \mathrm{~cm}^{-1}$ band is assigned to the antisymmetric $\mathrm{Pd}-\mathrm{H}_{2}$ stretching mode. The $2971 \mathrm{~cm}^{-1}$ band is the important $\mathrm{H}-\mathrm{H}$ stretching fundamental, which is $1188 \mathrm{~cm}^{-1}$ lower than the $4159 \mathrm{~cm}^{-1}$ frequency for the $\mathrm{H}_{2}$ diatomic molecule ${ }^{26}$ and in the range $3080-2650 \mathrm{~cm}^{-1}$ for $\eta^{2}-\mathrm{H}_{2}$ transition metal complexes. ${ }^{1,3}$ These bands show the large H/D ratios expected for hydrogen motions; the low 950/714 $=1.331$ ratio indicates significant anharmonicity in the metal $-\mathrm{H}_{2}$ potential function. Finally, the DFT calculations predict the $\mathrm{H}-\mathrm{H}$ frequency within $1.2 \%$ and the $\mathrm{Pd}-$ $\mathrm{H}_{2}$ modes within 4.3 and $4.8 \%$. The calculated infrared intensities are qualitatively in agreement with observed values although the $\mathrm{H}-\mathrm{H}$ stretching intensity is overestimated by an order of magnitude.

The bonding between Pd and $\mathrm{H}_{2}$ subunits was investigated using the natural bond orbital (NBO) method. ${ }^{27}$ Occupancy of the $\sigma$ bonding orbital of the $\mathrm{H}_{2}$ molecule decreased slightly on going from free $\mathrm{H}_{2}$ to the $\mathrm{Pd}-\mathrm{H}_{2}$ complex ( $2 e$ versus $1.9 e$ ). This is in line with weakening of $\mathrm{H}-\mathrm{H}$ bonding upon complexation. In addition, no bonding orbital between the palladium atom and dihydrogen molecule was found. The effective charge transfer from metal to ligand was calculated to be only $0.06 e$. From the NBO analysis, the $\sigma$ donation (from $\sigma$ orbital of $\mathrm{H}_{2}$ to the vacant 5 s orbital of Pd ) and $\pi$ back-donation (from the filled 4 d orbital of Pd to the dihydrogen $\sigma^{*}$ orbital) were found to be 0.17 and $0.23 e$, respectively. Therefore, the interaction between Pd and $\mathrm{H}_{2}$ arises from two cooperatively coupled intermolecular donoracceptor delocalizations that lead to overall charge reorganization with little net transfer.

The higher-energy open $\mathrm{PdH}_{2}$ dihydride predicted by earlier calculations ${ }^{11,12,14 \mathrm{~d}}$ was not observed based on the lack of any appropriate product bands predicted in the $2000 \pm 100 \mathrm{~cm}^{-1}$ region (Table 2). The more stable side-bonded $\mathrm{Pd}\left(\mathrm{H}_{2}\right)$ complex is the only primary reaction product observed here. Any $\mathrm{PdH}_{2}$ dihydride formed by laser-ablated Pd, which is capable of the endothermic ( $52 \mathrm{kcal} / \mathrm{mol}$ calculated) reaction to give PdH , relaxes to the more stable $\mathrm{Pd}\left(\mathrm{H}_{2}\right)$ complex. The ${ }^{2} \Sigma^{+} \mathrm{PdH}$ radical has been characterized by ESR spectroscopy in similar matrix-isolation experiments using laser-ablated Pd atoms and $\mathrm{H}_{2} .{ }^{28}$

The weak D band at $923 \mathrm{~cm}^{-1}$ exhibits $\mathrm{H}_{2}, \mathrm{HD}$, and $\mathrm{D}_{2}$ counterparts 27, 10, and $10 \mathrm{~cm}^{-1}$ below the strong A bands, and the weaker $\operatorname{Pd}(H D)$ band at $1306 \mathrm{~cm}^{-1}$ shows a weaker D component at $1298 \mathrm{~cm}^{-1}$. From the Pd concentration studies, species D clearly contains more Pd than $\mathrm{Pd}\left(\mathrm{H}_{2}\right)$. The visible photochemical conversion of species D into E suggests that D is a $\mathrm{Pd}-\mathrm{Pd}\left(\mathrm{H}_{2}\right)$ complex since the E bands are appropriate for assignment to the singlet $(\mathrm{PdH})_{2}$ ring, which is the most stable $\mathrm{Pd}_{2} \mathrm{H}_{2}$ structure. ${ }^{13,14 \mathrm{c}}$ In addition the spectra reveal two strong bands for $\mathrm{Pd}(\mathrm{HD}) \mathrm{Pd}$ and a combination band of symmetric and antisymmetric fundamentals. The E frequency observed at about $70 \%$ of the diatomic PdH value and the HD and $\mathrm{D}_{2}$ shifts are appropriate for this $(\mathrm{PdH})_{2}$ assignment, ${ }^{29}$ which is in agreement with our DFT frequency calculations. ${ }^{24}$ Finally the $\mathrm{Pd}\left(\mathrm{H}_{2}\right)$ and $(\mathrm{PdH})_{2}$ products are significant as they show that two Pd atoms are capable of $\mathrm{H}_{2}$ dissociation, but one cold Pd atom is not, in agreement with earlier calculations. ${ }^{13}$

Acknowledgment. This work was supported by C.N.R.S. Grant UMR 7075 and N.S.F. Grant CHE97-00116, and the Université Pierre et Marie Curie for an invited Professorship and the University of Virginia for a Sesquicentennial Associateship for L.A.
JA002737U


[^0]:    ${ }^{\dagger}$ Université Pierre et Marie Curie.
    ₹ University of Virginia.
    § Permanent address for corresponding author. Chemistry Department, University of Virginia, Charlottesville, Virginia, 22904-4319.
    (1) (a) Kubas, G. J.; Ryan, R. R.; Swanson, B. I.; Vergamini, P. J.; Wasserman, H. J. J. Am. Chem. Soc. 1984, 106, 451. (b) Kubas, G. J. Acc. Chem. Res. 1988, 21, 120.
    (2) Sweany, R. L. J. Am. Chem. Soc. 1985, 107, 2374.
    (3) (a) Upmacis, R. K.; Gadd, G. E.; Poliakoff, M.; Simpson, M. B.; Turner J. J.; Whyman, R.; Simpson, A. F. J. Chem. Soc., Chem. Commun. 1985, 27. (b) Upmacis, R. K.; Poliakoff, M.; Turner, J. J. J. Am. Chem. Soc. 1986, 108, 3645.
    (4) Crabtree, R. H.; Lavin, M. J. Chem. Soc., Chem. Commun. 1985, 794.
    (5) Morris, R. H.; Sawyer, J. F.; Shiralian, M.; Zubkowski, J. D. J. Am. Chem. Soc. 1985, 107, 5581.
    (6) (a) Collman, J. P.; Wagenknecht. P. S.; Hembre, R. T.; Lewis, N. S. J. Am. Chem. Soc. 1990, 112, 1294. (b) Jackson, S. A.; Hodges, P. M.; Poliakoff, M.; Turner, J. J.; Grevels, F. W. J. Am. Chem. Soc. 1990, 112, 1221.
    (7) Bender, B. R.; Kubas, G. J.; Jones, L.H; Swanson, B. I.; Eckert, J.; Capps, K. B.; Hoff, C. D. J. Am. Chem. Soc. 1997, 119, 9179. (b) Heitz, M.; Daniel, C. J. Am. Chem. Soc. 1997, 119, 8269.
    (8) Fayet, P.; Kaldor, A.; Cox, D. M. J. Chem. Phys. 1990, 92, 254.
    (9) Gross, A.;Wielke, S.; Scheffler, M. Phys. Rev. Lett. 1995, 75, 2718
    (10) Gostern, M.; Sitz, G. O. J. Chem. Phys. 1997, 106, 7378.
    (11) Low, J. J.; Goddard, W. A., III. J. Am. Chem. Soc. 1984, 106, 8321.
    (12) Balasubramanian, K.; Feng, P. Y.; Liao, M. Z. J. Chem. Phys. 1988, 88, 6955 and references therein.
    (13) Chi, Q.; Musaev, D. G.; Morokuma, K. J. Chem. Phys. 1998, 108, 8418.
    (14) (a) Backvall, J. E.; Bjorkman, E. E.; Petterson, L.; Siegbahn, P. E. M. J. Am. Chem. Soc. 1985, 107, 7265. (b) Jarque, C.; Novaro, O.; Ruiz, M. E.; Garcia-Prieto, J. J. Am. Chem. Soc. 1986, 108, 3507. (c) Bloomberg, M. R A.; Siegbahn, P. E. M.; Svenson, M. J. Phys. Chem. 1992, 96, 5783. (d) Siegbahn, P. E. M. Theor. Chim. Acta 1994, 81, 441. (e) See also: Dedieu, A. Chem. Rev. 2000, 100, 543.
    (15) Ozin, G. A.; Garcia-Prieto, J. J. Am. Chem. Soc. 1986, 108, 3099. (16) Balasubramanian, K. J. Chem. Phys. 1987, 87, 2800.
    (17) (a) Li, S.; Weiner, H. A.; Van Zee, R. J.; Weltner, W., Jr. J. Chem. Phys. 1997, 106, 2583. (b) Subsequent work in our laboratories shows that $\mathrm{PtH}_{2}$ absorbs at 2366 and $2349 \mathrm{~cm}^{-1}$ in solid argon.
    (18) Liang, B.; Zhou, M. F.; Andrews, L. J. Phys. Chem. A 2000, 104, 3905 and references therein.
    (19) Tremblay, B.; Manceron, L. Chem. Phys. 1999, 250, 187 and references therein.

